DR4500A Truline ${ }^{\circledR}$ Circular Chart Recorder

Function

Honeywell's Truline recorder is a one to four-channel, microprocessorbased, circular chart recorder. Its "one-pen" stylus printhead produces up to four analog traces and prints alphanumeric chart data on a blank heat-sensitive chart. All four traces share the same timeline reference which the Truline prints. This eliminates the error caused by pen alignment offsets in conventional pen designs. Since the Truline prints the chart and generates the analog traces at the same time, there is no error due to variations in chart size caused by changes in temperature and humidity. With microprocessor electronics and single printhead, the Truline recorder is easily configured by users to meet a variety of application requirements from metals to food processing. Models with up to four input channels accept inputs from any one of a variety of sensors or transmitters within the configurable range limits.

Also, models are available with one or two independent digital controllers to generate controlled output signals which will operate valves, dampers, heating elements, etc. for process control.

Features

- User Configurable - means that users, using English language prompts, can set and/or alter operating parameters to fit their requirements, including type of input, without recalibration.
- Operator Interface - includes clear, brilliant alphanumeric displays; indicators; deviation bargraph; and keypad for visual and tactile interaction.
- All-Purpose Chart —blank chart eliminates the need for ordering and stocking several types of charts. Users can design the chart to match specific applications.
- Four Channels - up to four channels that monitor process variables from a variety of sensors reduce panel space requirements.

Figure1 - Truline recorder provides printed chart data and continuous digital indication of process variable value.

Features, continued

- "One-pen" Printer - prints configurable alphanumeric chart data including time and trend lines. This automatically compensates for chart width variations caused by changes in the ambient relative humidity.
- Control Output - up to two versatile PID digital controllers let users configure the exact control action needed for their process.
- Time/Date - real-time, clock, dates, time of printing (hour, minutes, date and year) and any operator changes in real time guard against unauthorized chart advancement. There is a 10-year life battery backup.
- Accutune IITM —This standard feature provides a new, truly plug and play tuning algorithm, which will, at the touch of a button or through a digital input, accurately identify and tune any process including those with deadtime and integrating processes. This speeds up and simplifies start-up plus allows re-tuning at any setpoint.

Features, continued

- Fuzzy Logic - This standard feature uses fuzzy logic to suppress process variable overshoot due to SP changes or externally induced process disturbances. It operates independently from Accutunell ${ }^{\text {TM }}$ tuning. It does not change the PID constants, but temporarily modifies the internal controller response to suppress overshoot. This allows more aggressive tuning to co-exist with smooth PV response. It can be enabled or disabled depending on the application or the control criteria.
- Setpoint Ramp - a single set point ramp is user programmable and is easily repeated and activated through the Run/Hold key.
- Setpoint Rate - lets you define a ramp rate applied to any local setpoint change. A separate upscale or downscale rate is configurable.

Features, continued

- Set Point Ramp/Soak

Programming - Lets users program and store 18 ramp and 18 soak segments. Run or Hold of program is keyboard or remote switch selectable. Each Control Loop can run one of the 6 profiles using any number of consecutive segments of the program. You can select a recovery mode for power-up.

- Event Messages - up to six event messages can be printed on designated areas of the chart and can be triggered by a specific selectable event.

External Interface Selections

- Auxiliary Output - there is also a 4 to 20 mA current output available. It can be used to retransmit a process variable.
In addition, the 4-20 outputs on the control board can be used as an auxiliary output if not used for control.
- Modbus ${ }^{T M}$ Communications option allows you to network your recorders to take advantage of overall monitoring of the system using an RS485 network.
- Two Alarms - Two optional "soft" alarms are easily set by users to announce selected, out-of-limit conditions.
- Timer - This optional feature provides a configurable time-period of 0 to 99 hours, 59 minutes or units of minutes and seconds. It can be started via the keyboard, alarm 2, or by a digital input. The timer output is Alarm 1 that energizes at the end of the Timer Period. Alarm 1 can be automatically reset. The Timer Period can be changed between each batch. Status is shown on the lower display. Digital Input - Allows users to initiate from a remote location through two dry contact closures, selected recorder functions, such as automatic to manual control mode, direct to reverse controller action, or initiate autotune.

Options*

- CE Mark - Conformity with

73/23/EEC, Low Voltage Directive and 89/336/EEC EMC Directive.

- Chart Illumination - Lights the chart area to improve readability in lower light areas.

Figure 2 - Operator interface includes displays and keypad for comprehensive interaction with the recorder and the process.

Options*, continued

- Two Totalizers - one or two totalizers are available. Eight-digit totals with multiplier on digital display. Fourteen digits totalization print out on chart; a grand total can be printed.

- Math Functions

Algorithms - pre-configured algorithms for easy implementation into other control loop with Ratio and Bias.
Summer - will add three inputs with the result as the derived PV.
Multiplier/Divider - uses three analog inputs to calculate a derived PV with or without square root. Multiplier- will multiply three inputs with the result as the derived PV with or without square root. Subtractor/Multipler - the difference between input 1 and input 2 is multiplied by input 3.
Input High/Low Select - specifies the PV as the higher or lower of two inputs.

Polynomial Curve Characteristics

-- A fifth order polynomial equation can be used on any one of the analog inputs.

- Door Options - Choice of gray with standard latch or optional lock.
Optional UL approved NEMA4X door available.
- Approval Body Options - CSA certification and UL Listing or a combination is available.
- Customer ID Tag - (30 characters max.)
*Restrictions apply -- Not all options can be supplied together.

Abstract

User Configurable In the DR4500A Series recorder, microprocessor control replaces conventional electromechanical recording techniques. This means that its software now primarily determines the recorder's capabilities. Since Honeywell has preprogrammed a variety of functional capabilities into the recorder, a user only needs to configure those functions that are specific for the given application.

Operator Interface

Two digital displays present the process variable (PV) value and by key selection, the controller set point; controller output; deviation from reference input; dry bulb temperature; totalization value; or engineering units as desired. The lower display can also be set to scroll or hold.
In configuration mode, digital displays are pre-empted by English language prompts and values that you use to enter configuration data (type of input, chart speed, chart range, alarm settings, tuning constants, etc.) and then stored in nonvolatile memory for safe keeping in the event of a power failure.
Indicators light to show alarm conditions, which channel PV is on display, use of remote set point, which output relay is on, selected temperature unit, and controller's mode of operation. A deviation bargraph lets operators tell at-aglance if the process variable is at, above, or below the controller's set point.
The keypad through which configuration data is entered also serves as an integral automatic/ manual station that provides bumpless transfer for controllers.

Microprocessor Controlled Recording and Printing

Both the chart and the printhead are driven by the stepper motors, which are controlled by the microprocessor. The microprocessor uses the configured chart range data as well as the input data to determine the proper printhead position. The stepper motor accurately positions the printhead drive.
Since chart speed is configurable, users can easily alter the chart speed through the keypad. Gear changing or additional motors are no longer required.
By using a "one-pen" printhead that is capable of printing alphanumeric characters, users can now set various "printed" chart data through configuration. This means that such chart data as range marking in engineering units; digital values for process variables, and trace identification are easily personalized for the application.
This data, plus printed timelines and engineering units of scale eliminate the need to maintain an inventory of a variety of preprinted charts.
The Truline recorder uses a dot fill technique from a microprocessor algorithm to produce a continuous analog trace of a process variable.

Input Processing

The input can be one of many standard low-level electrical signals. Since inputs are isolated, users can connect different types of input signals to multi-channel models in any combination. And, for models with 2 or more channels, a relative humidity (wet/dry bulb) actuation is available using 100 -ohm platinum bulbs (Alpha $(\alpha)=0.00385$).
The input type and range are user configurable. Ranges are easily expanded and compressed within their span limitations to meet specific measurement needs. Users can select upscale or downscale sensor break protection for many of the actuations.
An integral 24 Vdc power supply, along with 4-20 mA input configuration, allows direct operation with up to two transmitters without the need for any additional/external transmitter power supply.
To totalize a variable, such as a flow signal, users select the applicable input and set the digital display scaling factor through configuration. This eliminates the need for additional integration hardware including a mechanical counter. The totalizer has an eight-digit display and 14 digit printing on the chart.
Also, there is the capability to reset the totalizer remotely with digital inputs and a low flow cutoff can be set, in percent of range, below which the applicable totalizer does not increment. Elapsed time can also be totalized. A grand total can be enabled to print the sum of all the totalizers.

Digital Controller

The DR4500A Series recorder controller (1 or 2 loops) includes an integral microprocessor-based, PID controller. A variety of output types, including a duplex variation for heatcool applications, lets users select the output that is right for their final control element.
Depending on the output type, users can configure the control action as On-Off, PID-A, PID-B, PD with Manual Reset or 3 Position Step control.
As with the record functions, English language prompts quickly guide users through the entry of all the controller's configurable parameters.

Diagnostics

All DR4500A Series recorders include self-diagnostic systems that check critical operations and provide error messages to alert users about detected faults.
Power-up self-diagnostics is a microprocessor controlled diagnostic program that runs tests on selected circuitry when the recorder is powered up. A "key" test allows a user to initiate, on demand, a self-diagnostic routine that checks the keypad and front panel displays.

Construction

The DR4500A Series recorder is housed in a molded case, which can be panel or surface, mounted. A glass or optional acrylic window, gasketed door protects internal components from harsh industrial environments while allowing easy access to the chart and operator interface. A UL approved NEMA4X door is also available.
Circuitry is partitioned on printed circuit boards for ease of service.

Process Interface

Power, input, and output wiring connect to terminations inside the case. Knockouts in the sides and bottom of the case accept conduit connections for convenient wire entry.

Specifications

Design

Digital Indication Accuracy	1 digit
Minimum Input Span	Range is fully configurable with span limitation of the operating range selected
Input Impedance	$4-20 \mathrm{~mA} \mathrm{dc}: 250$ ohms $0-10$ Vdc: 200 K ohms All others: 10 Megohms
Source Impedance	RTD: 100 ohms per lead maximum
Sampling Rate	Each input sampled 3 times a second (1 or 2 inputs); 3 times in 2 seconds (3 or 4 inputs)
Input Filter	Software: Single pole low pass section with selectable time constants (off to 120 seconds)
Digital Displays	Vacuum fluorescent, alphanumeric. A six-digit display dedicated to the process variable. Alternate information displayed during configuration mode. An eight-digit display shows key selected operating parameters. Also provides guidance during configuration.
Indicators	Channel PV display (CHN 1, 2, 3, or 4) Alarm status (ALM 1, 2) Controller Output (OUT 1 or 2) Remote Set Point (RSP) Temperature unit (F or C) or Engineering units Controller's mode (A or MAN)
Deviation Bargraph	21 segment, color coded deviation bargraph: Green (large) = On Control Green (Small) = Deviation to $\pm 10 \%$ of PV
Controller Modes of Operation	Manual Operation Automatic with local set point Automatic with remote set point
Performance	22 to 26 Vdc at input terminals (50 mA dc at 24 Vdc)

Number of Inputs	One channel model: One input Two channel model: Two inputs Three channel model: Three inputs Four channel model: Four inputs				
Types of Input Actuation ${ }^{1}$	Range		Reference Accuracy		Temp. Stability \pm Degrees Error Per 1 Degree ΔT
	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$\pm{ }^{\circ} \mathrm{F}$	$\pm{ }^{\circ} \mathrm{C}$	
Thermocouples ${ }^{2}$ B	105 to 105 $\mathbf{3 3 0 0}$ 150 150 500 to 1000 1000 to 3300	41 to $\mathbf{1 8 1 6}$ 41 to 66 66 to 260 260 to 538 538 to 1816	$\begin{aligned} & 42.00 \\ & 14.00 \\ & 3.00 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 23.00 \\ & 7.70 \\ & 1.70 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 2.00 \\ & 0.50 \\ & 0.20 \end{aligned}$
E	$\begin{array}{lll} \mathbf{- 4 5 4} & \text { to } & \mathbf{1 8 3 2} \\ -454 & \text { to } & -202 \\ -202 & \text { to } & 1832 \end{array}$	$\begin{array}{ll} \mathbf{- 2 7 0} \text { to } & \mathbf{1 0 0 0} \\ \mathbf{- 2 7 0} \text { to } & -130 \\ \mathbf{- 1 3 0} \text { to } & 1000 \end{array}$	$\begin{aligned} & 18.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 10.00 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.35 \end{aligned}$
E (low)	-200 to 1100	-129 to 593	0.50	0.30	0.20
J	0 to 1600	-18 to 871	0.40	0.22	0.06
J (low)	20 to 770	-7 to 410	0.20	0.11	0.04

Types of Input Actuation ${ }^{1}$	Range		Reference Accuracy		Temp. Stability \pm Degrees Error Per 1 Degree ΔT
	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$\pm{ }^{\circ} \mathrm{F}$	$\pm{ }^{\circ} \mathrm{C}$	
K	$\begin{aligned} &-320 \text { to } \\ &-320 \text { to } \\ & 0 \text { to } \\ & 2500 \end{aligned}$	$\begin{array}{rll} \mathbf{- 1 9 6} & \text { to } & \mathbf{1 3 7 1} \\ -196 \text { to } & -18 \\ 18 \text { to } & 1371 \end{array}$	$\begin{aligned} & 1.25 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.09 \end{aligned}$
K (low)	-20 to 1000	-29 to 538	0.30	0.16	0.05
NNM (Ni Ni Moly)	$\begin{array}{rll} \mathbf{3 2} \text { to } & 2500 \\ 32 \text { to } & 500 \\ 500 \text { to } & 2500 \end{array}$	$\mathbf{0}$ to $\mathbf{1 3 7 1}$ 0 to 260 260 to 1371	$\begin{aligned} & 0.75 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.07 \\ & \hline \end{aligned}$
NIC (Nicrosil Nisil)	0 to 2372	-18 to 1300	1.0	0.55	0.01
R	0 to 3100 0 to 500 500 to 3100	$\begin{array}{ll} \mathbf{- 1 8} \text { to } & \mathbf{1 7 0 4} \\ -18 & \text { to } \\ 260 \\ 260 \text { to } & 1704 \end{array}$	$\begin{aligned} & 2.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.13 \\ & \hline \end{aligned}$
S	0 to 3100 0 to 500 500 to 3100	$\mathbf{- 1 8}$ to $\mathbf{- 1 8}$ to 260 260 to 1704	$\begin{aligned} & 2.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.13 \end{aligned}$
T	-300 to 700	-184 to 371	0.60	0.35	0.07
T (low)	-200 to 600	-129 to 316	0.40	0.22	0.07
W5W26	0 to 4200 0 to 600 600 to 3600 3600 to 4200	$\begin{aligned} \hline-18 \text { to } & 2315 \\ -18 \text { to } & 316 \\ 316 \text { to } & 1982 \\ 1982 \text { to } & 2315 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1.30 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.70 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.17 \\ & 0.29 \end{aligned}$
W5W26 (low)	0 to $\mathbf{2 2 4 0}$ 0 to 600 600 to 2240	$\begin{array}{lll} \hline \mathbf{- 1 8} \text { to } & \mathbf{1 2 2 7} \\ -18 & \text { to } & 316 \\ 316 & \text { to } & 1227 \end{array}$	$\begin{aligned} & 1.10 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.10 \end{aligned}$
RTDs $^{\mathbf{2}}$ Platinum 100 ohms 200 ohms (High)** 200 ohms (Low)** 500 ohms	$\begin{array}{r} -300 \text { to } \\ 32 \text { to } \\ 752 \\ 32 \text { to } \\ 392 \\ -300 \text { to } \\ 900 \end{array}$	$\begin{array}{r} -184 \text { to } \\ 0 \text { to } \\ 0 \text { to } \\ 0200 \\ -184 \text { to } \\ 482 \end{array}$	$\begin{aligned} & 0.40 \\ & 0.30 \\ & 0.20 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.16 \\ & 0.12 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$
Linear Milliamperes dc Millivolts dc Volts dc	$\begin{gathered} 4 \text { to } 20 \\ 0 \text { to } 10 \\ 10 \text { to } 50 \\ 1 \text { to } 5 \text { (can be } \\ \text { calibrated } 0 \text { to } 5 \text {) } \\ 0 \text { to } 10 \end{gathered}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{array}{\|l} 0.10 \% \\ 0.05 \% \\ 0.05 \% \\ 0.05 \% \\ 0.10 \% \end{array}$		$\begin{aligned} & 0.004 \% /{ }^{\circ} \mathrm{F} \\ & 0.004 \% / /^{\circ} \mathrm{F} \\ & 0.004 \% /{ }^{\circ} \mathrm{F} \\ & 0.004 \% /{ }^{\circ} \mathrm{F} \\ & 0.004 \% /{ }^{\circ} \mathrm{F} \end{aligned}$
Relative Humidity Platinum Wet/Dry 100 ohm Input	-130 to 392	-90 to 200	0.30	0.16	0.03
Wet/Dry Bulb*	Measured \%RH	Dry Bulb Range ${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	Reference Accuracy $\pm{ }^{\circ} \mathrm{F} \quad \pm{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Temp. Stability } \\ & 53 \text { to } 104^{\circ} \mathrm{F} / \\ & 12 \text { to } 40^{\circ} \mathrm{C} \end{aligned}$
\%RH ${ }^{3}$	$\begin{array}{rll} 0 \text { to } & <20 \\ 20 \text { to } & 100 \end{array}$	$\begin{array}{rll} -103 \text { to } & 212 \\ 35 \text { to } & 40 \\ >40 \text { to } & 100 \\ 100 \text { to } & 212 \end{array}$	$\begin{array}{rll} -75 \text { to } & 100 \\ 2 \text { to } & 4 \\ >4 \text { to } & 38 \\ 38 \text { to } & 100 \end{array}$	$\begin{aligned} & \text { 2\% RH } \\ & 2 \% \text { RH } \\ & 1 \% \text { RH } \\ & 1 \% \text { RH } \end{aligned}$	$\begin{aligned} & 0.11 \% \mathrm{RH} /{ }^{\circ} \mathrm{F} \\ & 0.11 \% \mathrm{RH} /{ }^{\circ} \mathrm{F} \\ & 0.06 \% \mathrm{RH} /{ }^{\circ} \mathrm{F} \\ & 0.03 \% \mathrm{RH} /{ }^{\circ} \mathrm{F} \end{aligned}$

[^0]
Page 6

Specifications, continued
Configurable Parameters: These parameters can be set through the keypad for Recorder DR45AT -- Different parameters apply for DR45AR, DR45AW, DR45AH, and DR45AP Models.

Group	Parameters	Setting Range or Selection	Resolution
INPUT 1	Decimal point location Units Engineering Units Actuation type Transmitter characterization High range value Low range value Low Flow Cutoff Input compensation Filter 1 Sensor break protection Emissivity	None, 1 (XXX.X) or 2 (XX.XX) -- one decimal place only for non-linear inputs ${ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$ or engineering units A to $Z, 0$ to $9,+,-, \backslash$. See input types All non-linear input types, linear, square root -999.0 to 9999 -999.0 to 9999 0 to 100\% of input range -999.0 to 9999 0 to 120 None, Up or Down(burnout) .01 to 1.00	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 1.0 \\ & \\ & 0.01 \end{aligned}$
INPUT 2	SAME AS INPUT 1		
INPUT 3	SAME AS INPUT 1		
INPUT 4	SAME AS INPUT 1		
PEN 1	Pen 1 Pen 1 input Chart 1 high range value Chart 1 low range value Major chart division Minor chart division Range 1 Tag Pen 1 On Pen 1 Off	```Disable or Enable Input 1,2,3,or 4, Output 1, SP 1, Dgtl1, Dgtl2, Output 2, SP 2, RH, PV1 -999.0 to 999 -999.0 to 999 2 to 10 2 to 10 Up to five characters 0 to \(100 \%\) of chart 0 to \(100 \%\) of chart```	$\begin{aligned} & 0.1 \\ & 0.1 \\ & \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
PEN 2	Same as PEN 1		
PEN 3	Same as PEN 1		
PEN 4	Same as PEN 1		
CHART	Chart speed Hours per revolution Time Div Minor Div Continue Chart Name Header Rem Chart Wake Minute Wake Hour Wake Day Wake Month	8 hrs, $12 \mathrm{hrs}, 24 \mathrm{hrs}, 7$ days, or selected hours per revolution 6 to 744 hrs* (12 hrs. for Abrasion Resistant Pen) 8 to 24 4 or 8 Yes or No (Chart rotation beyond 360 degrees) Up to six characters Yes or No None, Extsw1, Extsw2, Alarm1,2, 3, 4, 5, or 6, Time 0 to 59 0 to 23 0 to 31 0 to 12 * Below 8 hrs. chart speed and 24 hrs. chart speed with Abrasion Resistant Pen, printing may be degraded.	
TIME	Minutes Hours Day Month Year Day	1 to 59 0 to 23 1 to 31 1 to 12 4-digits Monday to Sunday	
TOTAL 1	Totalized Value (Read only) Reset total Total 1 Total engineering units Rate Scaling factor Resettable	(8 digits displayed, 14 digits printed on chart) Yes or No Input 1, 2, 3, 4, PV1. ETime Desired alphanumeric title Second, Minute, Hour, Day or Million/Day 1, 10, 100, 1000, 10,000, 100,000 or 1E6 No, Local, EXTSW1, EXTSW2	

Group	Parameters	Setting Range or Selection	Resolution
TOTAL 2	SAME AS TOTAL 1		
Controller			
Input Algorithm	Input Algorithm K Coefficient PV High Limit PV Low Limit Ratio A Bias A Ratio B Bias B Ratio C Bias C Polynomial Characterization Polynomial coefficient C0 Polynomial coefficient C1, C2, C3, C4, and C5	Summer w/ratio-bias, multiplier with or without square root, multiplier/divider with or without square root, subtractor multiplier, or High/Low Select. $\begin{aligned} & 00.000 \text { to } 1000 \\ & -999 \text { to } 9999 \\ & -999 \text { to } 9999 \\ & -20 \text { to }+20 \\ & -999 \text { to } 9999 \\ & -20 \text { to }+20 \\ & -999 \text { to } 9999 \\ & -20 \text { to }+20 \\ & -999 \text { to } 9999 \end{aligned}$ None, Input 1, Input 2, Input 3, Input 4 -99.99 to 99.99 $-9.999 \text { to } 9999$	
Control 1 (2)	PID tuning sets Set point source Ratio (input 2) Bias SP tracking Power-up mode recall Power Out High and low SP limits Action High and low output limits Dropoff value Deadband Output Hyst Failsafe output value Remote Switching Man Key PB or Gain Reset units Control 1 Algorithm Output 1 Algorithm	1 or 2 (keyboard or automatic switchover) Local, Remote* (Control 1 only), 2 Local, or Control Loop 2 output $-20.00 \text { to } 20.00$ -999 to 9999 None or RSP (Control 1 only) Manual, Auto LSP, Auto RSP, AMSP, or AMLSP Last or Failsafe 0 to 100% of span in engineering units Direct or reverse -5 to 105% of output -5 to 105% of output -5.0 to 25% 0.0 to 5.0 Within the output limits None, ToMan, ToLSP, To2SP, ToDir, RN/HLD, TUNE Disable or Enable Proportional band (\%) or gain Repeats/minute or minutes/repeat PIDA, PIDB, PD + MR, ON-OFF, 3 Position Step Current, Position Prop, TimeD, Cur TI, TI Cur, Time	$\begin{aligned} & 0.01 \\ & 1.0 \\ & \\ & \\ & \\ & 1.0 \\ & 1.0 \\ & 0.1 \\ & 0.1 \\ & 1.0 \end{aligned}$
TUNING 1(2)	Gain (or Prop Band) Rate Min (or RPM) Reset Min (or RPM) Man Rset Cyc Sec	$\begin{array}{\|l\|} \hline 0.1 \text { to } 1000 \\ 0.00 \text { to } 10.00 \\ 0.02 \text { to } 50.00 \\ -100 \text { to } 100 \% \text { output } \\ 1 \text { to } 120 \mathrm{sec} . \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.01 \\ & 0.01 \\ & 1 \\ & 1 \end{aligned}$
SPRAMP 1(2)	SP Ramp (1 or 2) Time Min Final SP SPRate EU/HR UP EU/HR DN SP Program Recycles Soak Deviation Profile State Recovery Program End	Disable or Enable 0 to 255 0 to 100% of Span Enable or Disable 0 to 9999 0 to 9999 Disable or Enable 0 to 99 0.0 to 99.0 1 to 6 Disable or Hold Enable or Disable Last Setpoint or Failsafe	

* For Remote Setpoint Input \#3 is automatically assigned as your RSP source for Control \#1; Input \#4 is assigned for Control \#2. However, if the recorder has only 2 inputs, then the RSP will be on Input \#2.
* *Communications only

Specifications, continued
Controller (continued)

Group	Parameters	Setting Range or Selection	Resolution
SPPSEGS	Profile Start Segment Profile End Segment Ramp Unit Synchronize Profiles Segment X Ramp Segment X Setpoint Segment X Time	Ramp 1 to Ramp 35 Soak 2 to Soak 36 Time or Rate Enable, Disable 0.00 to 99:59 within High/Low Range Limits $0.00 \text { to } 99.59$	
SPP EVENT	Segment X Event	None, Alarm 1, 2, 3, 4, 5, or 6	
TIMER	Timer Period Start Ldisplay Reset Increment	Enable/Disable $0.00 \text { to } 99: 59$ Run/Hold Key or Alarm 2 Time Remaining or Elapsed Time Run/Hold key or Alarm 1 Minutes or Seconds	
OPTIONS	Reject Frequency Relative Humidity Atm. Pressure Scroll Grand Totalizer Deviation Deviation Setpoint	```60 or 50 Hz Yes or No 590 to 800 None, 1 sec, 2 sec, 3 sec Enable or Disable (Prints sum of all active totalizer at each major timeline) None, SetPnt, Chan 1 -999.0 to 9999```	
ALARMS $(1,2,3,4,5,6)$	SP Value SP Type Alarm Type Alarm Scaling Multiplier for Totalizer Alarm Alarm Hysteresis	-999 to 9999 None, Input 1 (2, 3, 4), RH/PV, Dev, Output, Dev2, Out2, Event, Total 1, Total 2 High or Low $1,10,100,1000,10000,100000,1 \mathrm{E} 6$ 0.0 to 100% of span or full output	0.1
AUXILIARY OUTPUT	Aux Output 4mA Val 20 mA Val	Disable, IN1, IN2, PV1, PV2, Dev1, Dev2, Out1(2),SP1 (2) Low scaling factor High scaling factor	
MODBUS	Communications State Communications Address Baud Transmit Delay	```Enable/Disable 1 to }9 300, 600, 1200, 2400, 4800, 9600, 19200, 38400``` None, $10 \mathrm{msec}, 20 \mathrm{msec}, 30 \mathrm{msec}, 40 \mathrm{msec}$, 50 msec .	
ADJUST PRINTING	Trace Line Grid Line Pen Type	Dark, Medium, Light Dark, Medium, Light Normal, Jewel	
EVNT MSG	Event 1 (2,3,4,5,6) MESSAGE 1 (2,3,4,5,6) POSITION 1 (2,3,4,5,6)	EXTSW1, EXTSW2, ALARM 1, ALARM 2, ALARM 3, ALARM 4, ALARM 5, ALARM6 Message for event (up to 6 characters) Chart position for message printing (0 to 100%)	
LOCKOUT	Password Lockout (software and/or hardware) Change	Up to four characters None, Calib, +Conf, Max (hardware configuration lockout-option) Used if changing Password	
STATUS	Version Failsafe RAM Test Configuration Test Calibration Test * Comm Test Fact CRC (Factory Set Input Constants) Battery test	Latest Software Version Yes or No Pass or Fail	

[^1]| Controller (continued) | |
| :---: | :---: |
| Controller Output ${ }^{1}$ (Optional) | - On-Off or Time Proportional
 One SPST electromechanical relay. Control action can be set for direct or reverse;
 N.O. or N.C. contact selectable.
 - On-Off Duplex , 3 Position Step, or Time Proportional Duplex
 Two SPST electromechanical relays. Control action can be set for direct or reverse;
 N.O. or N.C. contact selectable.
 - Current Proportional
 21 mA dc maximum into a negative or positive grounded or non-grounded load of 0 to 1000 ohms. Output range can be set between 4 and 20 mA , and as direct or reverse action.
 Resolution: 10 bits
 Accuracy: $\quad 0.5 \%$ full scale
 FM Approved Output (Optional)
 - Position Proportional
 Two SPST electromechanical relays operate motor having a 100 ohm to 1000 -ohm slidewire.
 - Current/Time Duplex and Time /Current Duplex
 Variation of time proportional duplex for Heat/Cool applications. Time proportional output (heat or cool) is a SPST electromechanical relay. Current proportional output (heat or cool) is a 4-20 mA signal that can be fed into a negative or positive grounded load of 0 to 1000 ohms and is operational over 50% of range or the entire range.
 Time Proportional Relay Resolution: 4.4 mSec .
 Relay Contact Ratings:
 Resistive Load: 5A @ 120 Vac, 2.5A @ 240 Vac
 Inductive Load: 50 VA @ 120 Vac or 240 Vac
 Cycle Time: 1 to 120 seconds
 Current Proportional :
 Resolution: 10 bits
 Accuracy: $\quad 0.5 \%$ full scale |
| CE Conformity (Europe)
 (Optional) | This product is in conformity with the protection requirements of the following European Council Directives: 73/23/EEC, the Low Voltage Directive, and 89/336/EEC, the EMC Directive. Conformity of this product with any other "CE Mark" Directive(s) shall not be assumed. |
| Product Classification: | Class I: Permanently Connected, Panel Mounted Industrial Control Equipment with protective earthing (grounding). (EN 61010-1) |
| Enclosure Rating: | Panel Mounted Equipment, IP 00, this recorder must be panel mounted. Terminals must be enclosed within the panel. Front panel IP 65 (IEC 529) |
| Installation Category (Overvoltage Category) | Category II: Energy-consuming equipment supplied from the fixed installation. Local level appliances, and Industrial Control Equipment. (EN 61010-1) |
| Pollution Degree: | Pollution Degree 2: Normally non-conductive pollution with occasional conductivity caused by condensation. (Ref. IEC 664-1) |
| EMC Classification | Group 1, Class A, ISM Equipment (EN 55011, emissions), Industrial Equipment (EN 50082-2, immunity) |
| Method of EMC Assessment | Technical File (TF) |
| Declaration of Conformity | 51197639-000 |
| Case/Door | Molded, foamed-Nory\|* with gasketed door to meet NEMA 3 enclosure requirements. Panel gasket available separately.
 An optional UL approved NEMA4X door is also available. |
| Chart | 12 -inch (304.8 mm) diameter chart. Plain thermal-sensitive paper. |
| Wiring Connections | Terminals inside the case |
| Color | Case: Black
 Door (standard): Caribbean Blue, Black or Gray |
| Approval Bodies | U.L. approval depending on model. Consult Model selection Guide for information. FM approved for Class I, Div. 2, Groups A, B, C, D areas depending on model. |
| Dimensions | See Figure 3 |
| Weight | 13.2 lb . (6 kg) |
| Mounting | Panel or surface mounted. Some adapter kits are available for existing panel cutouts. |

* Registered Trademark -- General Electric Co.

1. Not all controller outputs are available on all models of the Truline Recorder. Consult Model Selection Guide for information.

Specifications, continued

Options	
Alarm Output	Two relays available Relay Contact Ratings: First Relays, Resistive Load: 1A @ 120 Vac, 1/2A @ 240 Vac.
Auxiliary Linear Output (Optional)	Three Auxiliary Outputs are available: 21 mA dc maximum into a negative or positive grounded load or non-grounded load of 0 to 1000 ohms. Output range can be set between 2 to 21 mA , and as direct or reverse action. It can be configured to represent any one of 12 parameters: Input 1-4, PV 1-2, Deviation 1-2, Output 1-2, Setpoint 1-2. The range of the auxiliary output, as a function of the selected variable, can be scaled. Auxiliary Output 2 and Auxiliary Output 3 use Control Current Output 1 and Control Current Output 2 if Control "OUTALG" is not set to "CURRENT" or "POSITION".. Resolution: 12 bits over 0 to 21 mA (10 bits for Auxiliary Output 2 and 3) Accuracy: 0.2% of full scale Temperature Stability: 0.03% F.S. $/{ }^{\circ} \mathrm{C}$
Digital Input	+20 Vdc source for external dry contacts. Selects one configured input.
Totalizers	One or two totalizers on DR45A1, DR45A2, DR45AT and DR45AR Models. Up to four totalizers on DR45AW Model. Eight digit "totals" with multiplier on digital display; 14-digit totalization printout on chart. Grand total can be printed at each major timeline.
Calculations	Fo calculation available on DR45AR Model. Open channel flow calculations available on DR45AW Model.
Math Algorithms	Eight algorithms are available: $A+B+C$ (summer with ratio and bias) $\sqrt{ } \mathrm{A} \cdot \mathrm{B} / \mathrm{C}$ (square root multiplier/divider) $\sqrt{ } A \cdot B \cdot C$ (square root multiplier) A • B/C (multiplier/divider) A•B•C (multiplier) (A-B) •C (difference multiplier) where: A = Input $1 \cdot$ ratio $A+$ bias A $B=$ Input $2 \cdot$ ratio $B+$ bias B $C=$ Input $3 \cdot$ ratio $C+$ bias C Limit of Ratio $=-20$ to +20 Limit of Bias $=-999$ to +9999 High/Low Select between Input 1 and Input 2 Polynomial Equation - Fifth order provides equation
Miscellaneous	- UL and FM approved NEMA4X door - Door Lock - Chart Illumination - U.L. Listing, FM Approval, CSA, CE Conformity - Control with Accutune II Tuning Capability - Auxiliary 4-20 mA output - Glass or Acrylic Window - Customer ID Tag - 2 Pulse output counter alarm functions on DR45AW Model - Lead seal provisions
RS485 Modbus ${ }^{\circledR}$ RTU Communications	Baud Rate: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400 Protocol: RS485 Modbus RTU Communications Length of Link: $4000 \mathrm{ft}(1,219 \mathrm{~m})$ maximum Link Characteristics: Two wire, multidrop

®registered trademark of Schneider Electric.

* The maximum rating only applies up to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$. For higher temperatures, the RH specification is derated to maintain constant moisture content.

Reference Specifications

44-45-03-11	DR45AW Flow Model for Weir, Parshall flume or Palmer-Bowles flume calculations and up to 4 totalizers
44-45-03-12	DR45AR Model for up to 2 relays, special RTD ranges, and Fo calculation
44-45-03-16	DR45AH High Temperature Short Time (HTST) DR45AS Safety Thermal Limit Recorder (STLR)
	DR45AP Model for Dairy Flow/Timing Applications for the dairy industry with lead seal provisions and FDA compliance

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Contact your local sales office for warranty information. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.
While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Figure 3- DR4500A series recorder dimensions - for reference only

Ordering Information

For complete ordering information, request Model Selection Guide 44-45-16-07 for DR4500A Series Circular Chart Recorder. Honeywell offers a full line of sensors and transmitters that produce compatible range of dc voltage or current signals.

[^2]
[^0]: ${ }^{1}$ Not all Input Actuations are available on all models of the Truline Recorder. Consult Model Selection Guide for information.
 ${ }^{2}$ Includes reference junction calibration of ± 0.01 degrees using standard "ice bath" method of calibration. Factory calibration at reference $\pm 1.2^{\circ} \mathrm{F}$. Note that factory calibration may vary by as much as ± 10 microvolts or ± 0.3 ohms for RTDs which means recalibration may be required to achieve stated accuracy.
 ${ }^{3}$ The RH calculation is inoperative when temperature goes below $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ or above $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$. However, the dry bulb temperature will be monitored to $-103^{\circ} \mathrm{F}\left(-75^{\circ} \mathrm{C}\right)$. Accuracy stated is for Truline Recorder only and does not include remaining system accuracies.
 *IEC Alpha $(\alpha)=0.00385 \Omega / \Omega /{ }^{\circ} \mathrm{C}$
 **Only available with Model DR45AR

[^1]: * Communications only

[^2]: Honeywell Process Solutions
 2101 City West Blvd
 Houston, USA, TX 77042
 Honeywell Control Systems Ltd
 Honeywell House, Skimped Hill Lane
 Bracknell, England, RG12 1EB

